劍橋雅思真題4-13(節(jié)選篇)|廣州雅思英語學校
187 2020-05-25
很多同學在備考雅思時,不知道究竟該準備哪些備考資料。在此,推薦各位烤鴨寶寶可以從劍橋雅思真題入手。下面小編為大家?guī)韯蜓潘颊骖}文本,希望能為大家提供幫助。
劍橋雅思6Test1閱讀Passage1真題
AUSTRALIA'S SPORTING SUCCESS
A They play hard, they play often, and they play to win. Australian sports teams win more than their fair share of titles, demolishing rivals with seeming ease. How do they do it? A big part of the secret is an extensive and expensive network of sporting academies underpinned by science and medicine. At the Australian Institute of Sport (AIS), hundreds of youngsters and pros live and train under the eyes of coaches. Another body, the Australian Sports Commission (ASC) finances programs of excellence in a total of 96 sports for thousands of sportsmen and women. Both provide intensive coaching, training facilities and nutritional advice.
B Inside the academies, science takes centre stage. The AIS employs more than 100 sports scientists and doctors, and collaborates with scores of others in universities and research centres. AIS scientists work across a number of sports, applying skills teamed in one - such as building muscle strength in golfers - to others, such as swimming and squash. They are backed up by technicians who design instruments to collect data from athletes.They all focus on one aim: winning. We can't waste our time looking at ethereal scientific questions that don't help the coach work with an athlete and improve performance,' says Peter Fricker, chief of science at AIS.
C A lot of their work comes down to measurement - everything from the exact angle of a swimmer’s dive to the second-by-second power output of a cyclist. This data is used to wring improvements out of athletes. The focus is on individuals, tweaking performances to squeeze an extra hundredth of a second here, an extra millimetre there. No gain is too slight to bother with. It’s the tiny, gradual improvements that add up to world-beating results. To demonstrate how the system works, Bruce Mason at AIS shows off the prototypeof a 3D analysis tool for studying swimmers. A wire-frame model of achampion swimmer slices through the water, her arms moving in slow motion. Looking side-on, Mason measures the distance between strokes. From above, he analyses how her spine swivels.When fully developed, this system will enable him to build a biomechanical profile for coaches to use to help buddingswimmers. Mason's contribution to sport also includes the development of the SWAN (Swimming Analysis) system now used in Australian national competitions. It collects images from digitalcameras running at 50 frames a second and breaks down each part of a swimmer's performance into factors that can be analysed individually - stroke length, stroke frequency, average duration of each stroke, velocity, start, lap and finish times, and so on. At the end of each race, SWAN spits out data on each swimmer.
D ‘Take a look,' says Mason, pulling out a sheet of data. He points out the data on the swimmers in second and third place, which shows that the one who finished third actually swam faster. So why did he finish 35 hundredths of a second down? ‘His turn times were 44 hundredths of a second behind the other guy,' says Mason. ‘If he can improve on his turns, he can do much better’. This is the kind of accuracy that AIS scientists' research is bringing to a range of sports. With the Cooperative Research Centre for Micro Technology in Melbourne, they are developing unobtrusive sensors that will be embedded in an athlete's clothes or running shoes to monitor heart rate, sweating, heat production or any other factor that might have an impact on an athlete's ability to run. There's more to it than simply measuring performance. Fricker gives the example of athletes who may be down with coughs and colds 11 or 12 times a year. After years of experimentation, AIS and the University of Newcastle in New South Wales developed a test that measures how much of the immune-system protein immunoglobulin A is present in athletes'saliva. If IgA levels suddenly fall below a certain level, training is eased or dropped altogether. Soon, IgA levels start rising again, and the danger passes. Since the tests were introduced, AIS athletes in all sports have been remarkably successful at staying healthy.
E Using data is a complex business. Well before a championship, sports scientists and coaches start to prepare the athlete by developing a ‘competition model', based on what they expect will be the winning times. ‘You design the model to make that time,' says Mason. ‘A start of this much, each free-swimming period has to be this fast, with a certain stroke frequency and stroke length, with turns done in these times.' All the training is then geared towards making the athlete hit those targets, both overall and for eachsegment of the race. Techniques like these have transformed Australia into arguably the world's most successful sporting nation.
F Of course, there's nothing to stop other countries copying-and many have tried. Some years ago, the AIS unveiled coolant-lined jackets for endurance athletes. At the Atlanta Olympic Games in 1996, these sliced as much as two per cent off cyclists' and rowers' times. Now everyone uses them. The same has happened to the ‘altitude tent', developed by AIS to replicate the effect of altitudetraining at sea level. But Australia's success story is about more than easily copied technological fixes, and up to now no nation has replicated its all-encompassing system.
以上就是廣州雅思網今天為大家分享的劍橋雅思真題4-13(節(jié)選篇)相關內容,想要了解更多劍橋雅思真題及答案解析,歡迎及時關注本站!
廣州雅思英語學校成立于1999年,現(xiàn)任校長是有中國雅思“教父”之稱的中國社會科學院博士、中國雅思教育開拓者,資深留學教育專家萬昌明博士。廣州雅思英語學校是國內最早的專業(yè)雅思學校之一,也是英語IELTS考試中文“雅思”命名的首創(chuàng)者之一。十九年來, 廣州雅思英語學校秉承“教育以學生為本,以質量為先”辦學宗旨,堅持“知識、激情、勵志”的教學理念,發(fā)展成為華南乃至中國最大的雅思學校之一。
掃一掃
獲取更多福利
獵學網企業(yè)微信
獵學網訂閱號
獵學網服務號