>
學(xué)校機(jī)構(gòu) >
北京名師骨干組合上門家教 >
學(xué)習(xí)資訊>
數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)歸納總結(jié)(初一上冊(cè))
數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)歸納總結(jié)(初一上冊(cè))
4209 2017-02-08
大家在學(xué)習(xí)中要對(duì)其中的重要的知識(shí)點(diǎn)加以總結(jié)積累,這可以幫助大家更加有效的進(jìn)行以后的學(xué)習(xí),通過對(duì)知識(shí)點(diǎn)的積累可以幫助大家對(duì)知識(shí)進(jìn)行鞏固,增強(qiáng)大家對(duì)知識(shí)的掌握程度。下面小編就對(duì)初一數(shù)學(xué)上冊(cè)必考知識(shí)點(diǎn)匯總做出總結(jié),希望對(duì)大家有幫助~
一、代數(shù)初步知識(shí)。
1.代數(shù)式:用運(yùn)算符號(hào)“ -??……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個(gè)數(shù)或一個(gè)字母也是代數(shù)式)
2.列代數(shù)式的幾個(gè)注意事項(xiàng):
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“?”乘,不用“?”乘,也不能省略乘號(hào);
(3)數(shù)與字母相乘時(shí),一般在結(jié)果中把數(shù)寫在字母前面,如a?5應(yīng)寫成5a;
(4)帶分?jǐn)?shù)與字母相乘時(shí),要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a?應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3?a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時(shí),則應(yīng)分類,寫做a-b和b-a。
二、幾個(gè)重要的代數(shù)式(m、n表示整數(shù))。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a b,則三位整數(shù)是:100a 10b c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m n;偶數(shù)是:2n,奇數(shù)是:2n 1;三個(gè)連續(xù)整數(shù)是:n-1、n、n 1;
(4)若b>0,則正數(shù)是:a2 b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2。
三、有理數(shù)。
1.有理數(shù):
(1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù), a也不一定是正數(shù);π不是有理數(shù);
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b c的相反數(shù)是-a b-c;a-b的相反數(shù)是b-a;a b的相反數(shù)是-a-b;
4.絕對(duì)值: (1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);
注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數(shù)比大小:(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0?。?3)正數(shù)大于一切負(fù)數(shù);4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而??;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0。 四、有理數(shù)法則及運(yùn)算規(guī)律。
1.有理數(shù)的運(yùn)算法則: (1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加; (2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值; (3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。 2.有理數(shù)加法的運(yùn)算律: (1)加法的交換律:a b=b a;(2)加法的結(jié)合律:(a b) c=a (b c)。 3.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a (-b)。 4.有理數(shù)乘法法則: (1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘; (2)任何數(shù)同零相乘都得零; (3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。 5.有理數(shù)乘法的運(yùn)算律: (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc); (3)乘法的分配律:a(b c)=ab ac。 6.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù)。 7.有理數(shù)乘方的法則: 正數(shù)的任何次冪都是正數(shù); 五、乘方的定義。 1.求相同因式積的運(yùn)算,叫做乘方;
2.乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
3.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位。
4.有效數(shù)字:從左邊卓絕個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。
5.混合運(yùn)算法則:先乘方,后乘除,更后加減;注意:怎樣算簡(jiǎn)單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的更重要的原則。
6.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明。
六、整式的加減。
1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式。
2.單項(xiàng)式的系數(shù)與次數(shù):?jiǎn)雾?xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡(jiǎn)稱單項(xiàng)式的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。
3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式。
4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)更高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);注意:(若a、b、c、p、q是常數(shù))
5.整式:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱為整式 七、初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn):整式分類為
1.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。
2.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變。
3.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“ ”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào)。
4.整式的加減:整式的加減,實(shí)際上是在去括號(hào)的基礎(chǔ)上,把多項(xiàng)式的同類項(xiàng)合并。
5.多項(xiàng)式的升冪和降冪排列:把一個(gè)多項(xiàng)式的各項(xiàng)按某個(gè)字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個(gè)字母的升冪排列(或降冪排列)。
注意:多項(xiàng)式計(jì)算的更后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。
八、一元一次方程 1.等式與等量:用“=”號(hào)連接而成的式子叫等式。注意:“等量就能代入”!
2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個(gè)不為零的數(shù),所得結(jié)果仍是等式。
3.方程:含未知數(shù)的等式,叫方程。
4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”! 5.移項(xiàng):改變符號(hào)后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng).移項(xiàng)的依據(jù)是等式性質(zhì)1。
6.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。
7.一元一次方程的標(biāo)準(zhǔn)形式:ax b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
8.一元一次方程的更簡(jiǎn)形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)。
9.一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1……(檢驗(yàn)方程的解)。
九、列一元一次方程解應(yīng)用題。
1.讀題分析法——多用于“和,差,倍,分問題” 仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),更后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。 2.畫圖分析法——多用于“行程問題” 利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),更后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。